Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yang-Jun Ding, Xia Zhao, Yu-Xi Sun and Lai-Jin Tian*

Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: laijintian@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.047$
$w R$ factor $=0.105$
Data-to-parameter ratio $=19.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(4-Aminobenzoato)tris(2-methyl-2-phenylpropyl)tin(IV)

The title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{10} \mathrm{H}_{13}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)\right]$, crystallizes with two independent molecules in the asymmetric unit. The Sn atom is four-coordinate and has a distorted $\mathrm{SnC}_{3} \mathrm{O}$ tetrahedral geometry. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds help to establish the crystal packing.

Comment

Tris(2-methyl-2-phenylpropyl)tin carboxylates, $\left[\left(\mathrm{C}_{10} \mathrm{H}_{13}\right)_{3} \mathrm{Sn}\right.$ $\left(\mathrm{O}_{2} \mathrm{CR}\right)$], usually possess tetrahedrally coordinated Sn atoms and do not auto-associate into chain structures via carboxylate bridging, owing to the crowding of the three bulky organic groups at the Sn atom (Bao et al., 1998; Bomfim et al., 2002; Tian, Sun, Yang \& Yang, 2005; Tian, Sun, Yang \& Ng, 2005). In the title compound, (I), tetrahedral Sn coordination is also observed (Fig. 1). This compound crystallizes with two independent molecules in the asymmetric unit; they do not differ significantly from each other.

(I)

The $\mathrm{Sn} 1 \cdots \mathrm{O} 2$ and $\mathrm{Sn} 1^{\prime} \cdots \mathrm{O} 2^{\prime}$ separations of 3.068 (4) and 3.122 (4) \AA, respectively, indicate there are weak interactions between these atoms, which distort the tetrahedral SnOC_{3} geometry. Otherwise, the bond dimensions around the Sn atoms (Table 1) are similar to those found in other reported tris(2-methyl-2-phenylpropyl)tin carboxylates, such as tris(2-methyl-2-phenylpropyl)tin phenoxyacetate (Bao et al., 1998), acetate (Bomfim et al., 2002), 3-pyridinecarboxylate (Tian, Sun, Yang \& Yang, 2005) and bis[tris(2-methyl-2-phenylpropyl)tin(IV)] phthalate (Tian, Sun, Yang \& Ng, 2005). The carboxylate $\mathrm{C}-\mathrm{O}$ bond lengths indicate localization of the negative charges. The crystal packing for (I) is consolidated by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

Bis[tris(2-phenyl-2-methylpropyl)tin] oxide ($1.05 \mathrm{~g}, 1 \mathrm{mmol}$) and 4-aminobenzoic acid ($0.27 \mathrm{~g}, 2 \mathrm{mmol}$) in benzene (50 ml) were refluxed for 4 h with azeotropic removal of water via a Dean-Stark
\qquad
trap. The resulting clear solution was evaporated under reduced pressure. The white solid obtained was recrystallized from methanol and crystals of (I) were obtained from hexane-chloroform ($1: 1 \mathrm{v} / \mathrm{v}$) by slow evaporation at 298 K (yield 72%, m.p. 362-363 K). Analysis found: C $68.04, \mathrm{H} 6.79, \mathrm{~N} 2.17 \%$; calculated for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{NO}_{2} \mathrm{Sn}$: C 67.90 , H 6.93 , N 2.14%. IR (KBr disc): $v_{\text {as }}(\mathrm{COO}) 1641, v_{\mathrm{s}}(\mathrm{COO})$ $1347 \mathrm{~cm}^{-1}$.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{10} \mathrm{H}_{13}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)\right]$	$Z=8$
$M_{r}=654.43$	$D_{x}=1.270 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, $P_{2} 2_{1} 2_{1}$	Mo $K \alpha$ radiation
$a=13.165(1) \AA$	$\mu=0.78 \mathrm{~mm}^{-1}$
$b=13.4984(10) \AA$	$T=295(2) \mathrm{K}$
$c=38.507(3) \AA$	Block, colorless
$V=6842.9(9) \AA \AA^{3}$	$0.38 \times 0.35 \times 0.30 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.757, T_{\text {max }}=0.800$

Figure 1
The structure of the Sn 1 molecule in (I), showing 30% displacement ellipsoids (arbitrary spheres for the H atoms). The long $\mathrm{Sn} 1 \cdots \mathrm{O} 2$ interaction is shown by dashed lines. The structure of the $\mathrm{Sn} 1^{\prime}$ molecule is virtually indentical.

H atoms were placed in calculated positions ($\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier) or $1.5 U_{\text {eq }}$ (methyl carrier).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Science Foundation of Shandong Province and Qufu Normal University for supporting this work.

References

Bao, M., He, Q.-L., Liu, B.-D., Xing, Y. \& Liu, Y.-H. (1998). Chin. J. Inorg. Chem. 14, 114-117.
Bomfim, J. A. S., Filgueiras, C. A. L., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, J. L. \& Wardell, S. M. S. V. (2002). Polyhedron, 21, 1667-1676.
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tian, L.-J., Sun, Y.-X., Yang, M. \& Ng, S. W. (2005). Acta Cryst. E61, m74m75.
Tian, L.-J., Sun, Y.-X., Yang, M. \& Yang, G.-M. (2005). Acta Cryst. E61, m1346-m1347.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

